Connect with us

Tech

Which Apple Watch Is Best Right Now?

Published

on

Which Apple Watch Is Best Right Now?


Note: Apple will likely launch the Apple Watch Series 11 in September, so I recommend holding off on buying the Series 10.

The Watch Series 10 (8/10, WIRED Recommends), along with the Series 9 and the Watch Ultra 2, finally got blood oxygen sensing back in August 2025 via a software update, after a prolonged suspension of sales due to a patent-infringement case. The feature has been redesigned to get around the patent. To see your blood oxygen, you update the paired iPhone to iOS 18.6.1 and the Apple Watch to watchOS 11.6.1. You’ll see the sensor data in the Respiratory section of the Health app, rather than on the watch itself.

That’s a little annoying, but with the new health updates in WatchOS 11 and WatchOS 26, you will probably be checking the Health app more frequently anyway. This is now the best Apple Watch, without caveats. The standout health feature, Breathing Disturbances, uses the Series 10’s accelerometer to notify you if you have sleep apnea, which otherwise requires a disruptive sleep test to diagnose. It’s the perfect health feature to monitor with a wearable that you wear constantly.

There are also a bunch of hardware and software upgrades. It’s thinner and lighter, so it’s more comfortable to wear while sleeping, and it has fast charging, so it can track more of your activities during the day. I found that I was able to top it up pretty easily with 20 to 30 minutes on a fast charger while I was in the shower every morning. It also has a bunch of new features focused on water sports, including water temperature, which is pretty vital where I live, since a lot of people become incapacitated when they jump into water that’s too cold. This is now the best Apple Watch, without caveats.

Specs and Features
Case sizes: 42 mm or 46 mm
Blood oxygen sensing: Yes
Second-gen ultra-wideband chip: Yes
Skin temperature sensing: Yes
Crash Detection: Yes
Fall Detection: Yes



Source link

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Tech

Warehouse automation hasn’t made workers safer—it’s just reshuffled the risk, say researchers

Published

on

Warehouse automation hasn’t made workers safer—it’s just reshuffled the risk, say researchers


Credit: Unsplash/CC0 Public Domain

Rapid advancements in robotics are changing the face of the world’s warehouses, as dangerous and physically taxing tasks are being reassigned en masse from humans to machines. Automation and digitization are nothing new in the logistics sector, or any sector heavily reliant on manual labor. Bosses prize automation because it can bring up to two- to four-fold gains in productivity. But workers can also benefit from the putative improvements in safety that come from shifting dangerous tasks onto non-human shoulders.

At least, that’s the story employers such as Amazon have—largely successfully—promoted to the public.

In a recent study, Brad N. Greenwood, Dean’s Distinguished Professor at the Costello College of Business at George Mason University, investigated this question: Does automation make warehouse jobs safer? His co-authors include Gordon Burtch of Boston University and Kiron Ravindran of IE University. Their findings, which appear in ILR Review, reveal that the answer depends on how safety is defined.

The researchers distinguish between two types of injuries: severe and non-severe. Severe injuries include broken bones, traumatic falls, and other incidents that cause employees to miss work. Non- include sprains, strains, and repetitive motion problems, often leading to reassignment or light-duty work, but not missing work.

The findings showed that robots do seem to reduce severe injuries. In robotic fulfillment centers (FC), tasks like heavy lifting and long walks are handled by machines, reducing workers’ exposure to physical hazards. The researchers found a meaningful drop in the number of severe injuries in these facilities.

However, the overall picture is not so clear. In the same robotic warehouses, the researchers observed a sharp increase in non-severe injuries, especially during high-demand periods such as Amazon Prime Day and the winter holidays. The robotic fulfillment centers experienced a 40% decrease in severe injuries but a 77% increase in non-severe injuries compared to traditional centers.

To better understand their results, the researchers also analyzed thousands of online posts from Amazon warehouse workers.

“There was an immediate and obvious discrepancy in opinion, based on whether their fulfillment center was roboticized or not,” says Greenwood.

Humans working alongside robots described their daily experience as “not physically exhausting” and “better than working at a legacy FC.” However, they also reported being expected to meet much higher performance metrics than their counterparts in non-automated FCs—amounting to a two-to-three-times higher “pick rate” in some cases. The faster pace of the human/robot dance was accompanied by a far more repetitive work routine that induced burnout in some workers, while causing others to “zone out.”

This dual reality—robots reducing some injuries while exacerbating others—has serious implications. For employers, simply introducing automation is not enough. Without careful job design, task rotation, and realistic performance goals, the shift to robotics can create new health and safety risks.

“Companies have bottom-line reasons to take this issue seriously. Beyond simple issues of liability, there is a cost to the firm of workers being unable to perform their duties,” says Greenwood.

Traditional safety metrics often focus on injuries that result in lost workdays. But as the nature of work changes, this approach may miss more subtle forms of harm. Chronic, repetitive injuries may not lead to time off, but they still decrease worker well-being and performance.

Looking ahead, Greenwood and his colleagues plan to explore how these trends play out over longer timeframes and in other industries. As robots become more common in fields like manufacturing, retail, and health care, similar patterns may emerge. The researchers hope their findings will help inform both corporate and public policy, ensuring that the future of work is not only more efficient but also humane.

“That isn’t to deny that warehouse robotics benefits workers,” Greenwood explains. “But we need to think more carefully about how to use them, and what that means for the humans they work with.”

More information:
Gordon Burtch et al, Lucy and the Chocolate Factory: Warehouse Robotics and Worker Safety, ILR Review (2025). DOI: 10.1177/00197939251333754

Citation:
Warehouse automation hasn’t made workers safer—it’s just reshuffled the risk, say researchers (2025, August 28)
retrieved 28 August 2025
from https://techxplore.com/news/2025-08-warehouse-automation-hasnt-workers-safer.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Continue Reading

Tech

Air conditioning isn’t the only answer

Published

on

Air conditioning isn’t the only answer


Credit: Pixabay/CC0 Public Domain

I recently returned from visiting family in America and was struck by how hot I felt back home in London, despite the temperatures being lower. Partly, this was down to humidity: London is sticky in summer, while Utah, where my uncle lives, is very dry.

But it’s also down to the buildings. My brick house absorbs and retains heat while every building I went to in America was either well ventilated or had air conditioning blasting away.

That contrast got me thinking: as the UK warms, can it keep its homes and workplaces comfortable without relying solely on air-con?

Jesus Lizana, Nicole Miranda and Radhika Khosla at the University of Oxford say that northern Europe is dangerously unprepared for the heat of the near future.

They looked at the coming demand for cooling using the concept of “cooling degree days,” which essentially assesses how often people will need to take extra measures, like switching the on, to keep themselves cool.

They found countries like Nigeria and Chad will see the biggest absolute rise in cooling degree days. “A clear indication that Africa is shouldering the burden of a problem it did not create,” they note.

But they also found that countries in northern latitudes will face the greatest relative increase in uncomfortably hot days.

“Of the top ten countries with the most significant relative change in cooling degree days as global warming exceeds 1.5°C and reaches 2°C, eight are located in northern Europe.”

It gets worse. “Buildings in the northern hemisphere,” they write, “are primarily designed to withstand cold seasons by maximizing solar gains and minimizing ventilation—like greenhouses.”

The solution seems obvious: let’s all get air-con.

Coal-powered air-con?

But Mehri Khosravi says it isn’t that simple. An energy researcher at the University of East London, she warns that:

“Cooling requires huge amounts of energy at the exact moments when demand is already high. In 2022 and 2023, the UK had to briefly restart a coal power plant to keep the lights—and the air conditioners—on.”

Khosravi says the UK and similar countries should instead focus on reducing demand for cooling.

In winter, she says, we rightly focus on better insulation to reduce heating demand, as “it’s a lot harder to warm a house than it is to stop heat escaping in the first place.”

So how do we stop a northern European brick house from heating up in the first place?

Khosravi suggests we look to southern Europe for inspiration, where 35°C summers were common long before climate change. Her suggestions include shading and shutters to block sunlight before it enters a building, natural ventilation to let heat escape in cooler hours, and reflective or light-colored buildings that reflect sunlight.

It’s hard to imagine Scarborough being turned into Santorini any time soon. But while we wait to adapt our buildings for the new normal, Khosravi says we should adapt our behavior too.

In Spain, the hottest hours are for siestas. Outdoor activities are paused, and people are more active in the mornings and evenings. Culturally, they understand that keeping curtains closed during the day and opening windows at night can prevent homes from overheating.

In the UK, heat is still culturally framed as “good weather”. Sunny weekends trigger beach trips, barbecues and more outdoor activity, even when it’s dangerously hot. This mismatch between perception and risk is a major public health challenge.
Smarter cooling

Perhaps there are smarter ways to cool down. Academics in Australia recently published research suggesting a “fan first” approach, even when air-conditioning is installed.

“The approach is simple,” they write: “use electric fans as your first cooling strategy, and only turn on air conditioning when the indoor temperature exceeds 27°C.”

These fans use only a tiny fraction of the electricity used to run air conditioning, but “can make you feel up to 4°C cooler.” In their research, the Australian team increased an office’s air conditioning set-point from 24 to 26.5°C, with supplementary air movement from desk and ceiling fans. This “reduced energy consumption by 32%, without compromising thermal comfort.”

Air conditioning doesn’t have to mean the typical rows of humming white boxes. Heat pumps—already central to Britain’s low-carbon heating plans—can also keep homes cool in summer.

Essentially, they’re able to act like reversible air conditioners: in winter, they draw warmth into a building, and in summer they can run in reverse to push heat out.

Crucially, they do so with far greater efficiency than traditional systems. Theresa Pistochini, an engineer at UC Davis in California, points out that heat pumps can be “anywhere from 200% to 400% efficient,” meaning they move more than twice as much energy (heat) than the energy required to operate them.

Her analysis found that “buying a heat pump today will reduce impact in almost all geographical locations.”

For households, this could mean one appliance that covers both heating and cooling, slashes energy bills, and avoids the climate-damaging lock-in of conventional air conditioning. For policymakers, heat pumps may offer a way to meet surging cooling demand without blowing the carbon budget.

But heat pumps aren’t a perfect fix. Installation is costly, many older homes will still need upgrades, and there aren’t enough trained engineers. They’ll need further support if they’re to become a mainstream alternative to air-con.

Nonetheless, together with simple measures like fans and shutters, heat pumps point to a smarter approach to cooling. And it could be made even more sustainable if paired with clean energy from rooftop solar.

Homes equipped with can generate electricity during the hottest parts of the day—exactly when air conditioners or heat pumps are working hardest.

Tom Rogers and colleagues at Nottingham Trent University say solar will play a “pivotal role” in “addressing summer cooling demand and enhancing climate resilience.” They analyzed satellite images to estimate that rooftop solar could provide “nearly one third” of the city’s electricity demand.

The UK is warming, and staying comfortable in hotter summers is a must. But there’s more than one way to cool down. Simple measures like fans, efficient and rooftop solar—combined with smarter building design and passive —could keep homes safe, energy use low and emissions in check.

Provided by
The Conversation


This article is republished from The Conversation under a Creative Commons license. Read the original article.The Conversation

Citation:
Air conditioning isn’t the only answer (2025, August 28)
retrieved 28 August 2025
from https://techxplore.com/news/2025-08-air-conditioning-isnt.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Continue Reading

Tech

Minimal 3D model reveals fundamental mechanisms behind toughening of soft–hard composites

Published

on

Minimal 3D model reveals fundamental mechanisms behind toughening of soft–hard composites


Though relatively simple compared to previously used models, the proposed soft–hard composite (SH-com) framework developed in the study accurately reflects well-known physical phenomena observed in material systems. This image depicts the failure of a notched block for different combinations of soft and hard building blocks. Credit: Prof. Katsuhiko Sato from the University of Toyama, Japan Source Link: https://doi.org/10.1073/pnas.2506071122

Engineers have long grappled with a fundamental challenge: creating materials that are both strong and tough enough to resist deformation and prevent fractures. These two properties typically exist in opposition, as materials that excel in one area often fail in the other.

Nature, however, has elegantly solved this trade-off in like bone, teeth, and nacre, which strategically combine soft and hard components in multi-layered architectures. These blueprints have inspired scientists to develop artificial soft–hard composites—from advanced dual-phase steels to specialized gels and reinforced rubbers—that demonstrate performance exceeding that of their individual components.

While artificial soft–hard composites have shown impressive performance in and , the fundamental mechanisms behind their enhanced properties remain largely unclear. The inherent complexity of these materials, encompassing nonlinear behaviors, intricate internal structures, and multi-scale interactions, has made it difficult to isolate the essential design principles.

Specifically, scientists have struggled to understand how these materials transition from brittle-to-ductile (BTD) fracture behavior, and what the minimum requirements are for constituent components to achieve this toughening effect.

In this vein, a research team including Dr. Fucheng Tian and Professor Jian Ping Gong from the Faculty of Advanced Life Science, Hokkaido University, Japan, as well as Specially Appointed Professor Katsuhiko Sato from the Program of Mathematics and Informatics, University of Toyama, Japan, recently undertook a study to tackle this complex problem.

In their pioneering work published in the journal Proceedings of the National Academy of Sciences, the researchers introduce a minimal three-dimensional soft–hard composite (SH-com) framework. By eliminating complicated nonlinear effects and intricate network structures, their model enabled them to focus on the core underlying principles governing the toughening effect.







Evolution of crack patterns and damage morphologies in the pure hard system (ϕs = 0). Damaged hard elements are highlighted in orange. Credit: Proceedings of the National Academy of Sciences (2025). DOI: 10.1073/pnas.2506071122

The SH-com model uses randomly distributed linear-elastic soft and hard elements, each characterized by its elastic stiffness and the energy required for failure. Despite its simplicity, this model successfully reproduced several hallmark behaviors of tough composite materials, including mechanical hysteresis (the Mullins effect), sacrificial bond-driven toughening, and the critical BTD transition fracture behavior. Through systematic testing of different compositions, the team discovered that the BTD transition occurs when the soft and hard phases reach a specific mechanical equilibrium.

Moreover, they found that optimal toughening occurs at a specific ratio of soft to hard components, governed by a universal scaling relationship linked to the differences in fracture toughness between components. When an optimal composition is achieved, the composite can exceed the toughness of its individual constituents.

“Though the SH-com model is anchored in the fundamental linear-elastic regime, the outcomes exhibit compelling consistency with the experimental findings from nonlinear soft–hard composite materials. This consistency emphasizes the fundamental principles underlying the toughening mechanisms in general soft–hard composite materials,” remarks Dr. Fucheng.

Based on these insights, the team developed a “toughening phase diagram,” which serves as a practical guide illustrating the optimal combinations of stiffness and toughness between components to achieve superior material performance. Notably, the simplicity and universality of their model suggest that these principles can be applied broadly.

“Our study reveals the fundamental toughening mechanisms of SH-com systems, offering insights for designing tougher materials,” conclude the authors. “In fields such as , the development of tough gels is required, and we expect our study to contribute to those efforts.”

From the development of more resilient components for aerospace and automotive applications to advanced biomaterials for and , this research provides a powerful theoretical foundation for engineering materials that are both strong and tough.

More information:
Fucheng Tian et al, Fundamental toughening landscape in soft–hard composites: Insights from a minimal framework, Proceedings of the National Academy of Sciences (2025). DOI: 10.1073/pnas.2506071122

Citation:
Minimal 3D model reveals fundamental mechanisms behind toughening of soft–hard composites (2025, August 28)
retrieved 28 August 2025
from https://techxplore.com/news/2025-08-minimal-3d-reveals-fundamental-mechanisms.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Continue Reading

Trending