Tech
Inside Stargate AI’s massive Texas data center campus, with 5 more sites announced
The Stargate Project has brought the global artificial intelligence race to the West Texas desert.
And on Sept. 23, it also brought a flock of industry leaders, U.S. congressmen, other policymakers and a gaggle of regional and news outlets.
All eyes are on the collaboration between OpenAI, Oracle and SoftBank to construct data centers and other infrastructure to support the artificial intelligence boom. On Sept. 23, Stargate also announced it would also be building five additional data center sites across the country.
There are plans to build more capacity near the flagship Abilene site, as well as sites in two other Texas counties, Shackelford County and Milam County. Other locations include Doña Ana County, New Mexico, Lordstown, Ohio, and another soon-to-be-disclosed location in the Midwest.
The joint venture was first announced at the White House in January with President Donald Trump, as part of a broader push for investment in American AI infrastructure.
As the high-stakes international competition to develop and deploy the technology escalates, the companies are betting big on the $500 billion program, with AI kingpin NVIDIA recently joining the fray by investing $100 billion in OpenAI, it announced.
Locals chat about the data centers over their morning coffee downtown―and anyone who’s paying attention to anything relatively tied to the AI industry at least knows about Stargate, even if they can’t point Abilene out on a map.
“Texas is ground zero for AI,” U.S. Center Ted Cruz told a crowd. He praised the state’s availability of low-cost energy, open-for-business environment with low taxes and low regulations, and the way the state lionizes entrepreneurs.
“So in my view, Texas and tech and AI are a perfect match,” Cruz said.
Over 1,000 acres of high-tech
The campus, about 180 miles from Dallas, is on track to provide OpenAI with the world’s largest supercluster when fully built, according to Oracle.
The 1,100-acre campus will have eight near-identical buildings, totaling up to 4 million square feet and is expected to be fully completed around this time next year.
The buildings house servers filled with graphics processing units (GPUs). There are numerous metal boxes with blinking lights and wires of various sizes and color.
Fiber is being installed both below ground and above, tubes are designed to pump a cooling liquid using a closed-loop system. A lot of pieces work together to support the highly technical compute needs.
A portion of the campus is already operating on Oracle Cloud Infrastructure after Oracle began delivering the first NVIDIA GB200 racks in June. NVIDIA’s deal with OpenAI will build and deploy at least 10 gigawatts of AI data centers.
It’s surrounded by rugged scenery: red dirt kicked up by gusts of wind, rocky terrain and short trees. The Abilene skyline is visible through a few miles of hazy air. There are roadways throughout the campus, including a makeshift six-lane “highway,” to ease the traffic from roughly 6,400 workers traveling on and off the site alongside semi-trucks.
OpenAI CEO Sam Altman said the Abilene campus is a fraction of what the partnership is building.
Even then, more infrastructure will still be needed to serve the demand of ChatGPT.
“We’ve got to make this investment,” Altman said. With global competition heating up between the U.S. and other major powers, ” … we cannot fall behind in the need to put the infrastructure together to make this revolution happen.”
Commitment to Abilene
The data centers being built at the new locations, which were selected among 300 proposals from more than 30 states, drive Stargate ahead of schedule to secure a full $500 billion, 10 gigawatt commitment by the end of the year.
“We’re really focused on enabling AI to have all the compute capacity needs,” new co-CEO of Oracle, Clay Magouyrk said.
Abilene Mayor Clay Weldon Hurt said his city is steeped in tradition, and acknowledged there is a mix of feelings among local residents. However, the town is open to progress, he added.
“I have a commitment to our citizens of Abilene to make Abilene a better place, and we have that commitment to grow,” Hurt said.
“So, even though we’re very proud of our heritage, and we’re always going to be proud of that heritage, we’re always going to be open [for business], and we’re so excited that this opportunity has come to Abilene, and we welcome it.”
Sen. Cruz called Stargate an impressive start, but encouraged more building and hiring.
“This is the beginning of a long-term effort to invest in American jobs, supply the additional power needed for AI, and deliver products and services that will benefit all Americans,” he said.
2025 The Dallas Morning News. Distributed by Tribune Content Agency, LLC.
Citation:
Inside Stargate AI’s massive Texas data center campus, with 5 more sites announced (2025, September 24)
retrieved 24 September 2025
from https://techxplore.com/news/2025-09-stargate-ai-massive-texas-center.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.
Tech
Mind readers: How large language models encode theory-of-mind
Imagine you’re watching a movie, in which a character puts a chocolate bar in a box, closes the box and leaves the room. Another person, also in the room, moves the bar from a box to a desk drawer. You, as an observer, know that the treat is now in the drawer, and you also know that when the first person returns, they will look for the treat in the box because they don’t know it has been moved.
You know that because as a human, you have the cognitive capacity to infer and reason about the minds of other people—in this case, the person’s lack of awareness regarding where the chocolate is. In scientific terms, this ability is described as Theory of Mind (ToM). This “mind-reading” ability allows us to predict and explain the behavior of others by considering their mental states.
We develop this capacity at about the age of four, and our brains are really good at it.
“For a human brain, it’s a very easy task,” says Zhaozhuo Xu, Assistant Professor of Computer Science at the School of Engineering—it barely takes seconds to process.
“And while doing so, our brains involve only a small subset of neurons, so it’s very energy efficient,” explains Denghui Zhang, Assistant Professor in Information Systems and Analytics at the School of Business.
How LLMs differ from human reasoning
Large language models or LLMs, which the researchers study, work differently. Although they were inspired by some concepts from neuroscience and cognitive science, they aren’t exact mimics of the human brain. LLMs were built on artificial neural networks that loosely resemble the organization of biological neurons, but the models learn from patterns in massive amounts of text and operate using mathematical functions.
That gives LLMs a definitive advantage over humans in processing loads of information rapidly. But when it comes to efficiency, particularly with simple things, LLMs lose to humans. Regardless of the complexity of the task, they must activate most of their neural network to produce the answer. So whether you’re asking an LLM to tell you what time it is or summarize “Moby Dick,” a whale of a novel, the LLM will engage its entire network, which is resource-consuming and inefficient.
“When we, humans, evaluate a new task, we activate a very small part of our brain, but LLMs must activate pretty much all of their network to figure out something new even if it’s fairly basic,” says Zhang. “LLMs must do all the computations and then select the one thing you need. So you do a lot of redundant computations, because you compute a lot of things you don’t need. It’s very inefficient.”
New research into LLMs’ social reasoning
Working together, Zhang and Xu formed a multidisciplinary collaboration to better understand how LLMs operate and how their efficiency in social reasoning can be improved.
They found that LLMs use a small, specialized set of internal connections to handle social reasoning. They also found that LLMs’ social reasoning abilities depend strongly on how the model represents word positions, especially through a method called rotary positional encoding (RoPE). These special connections influence how the model pays attention to different words and ideas, effectively guiding where its “focus” goes during reasoning about people’s thoughts.
“In simple terms, our results suggest that LLMs use built-in patterns for tracking positions and relationships between words to form internal “beliefs” and make social inferences,” Zhang says. The two collaborators outlined their findings in the study titled “How large language models encode theory-of-mind: a study on sparse parameter patterns,” published in npj Artificial Intelligence.
Looking ahead to more efficient AI
Now that researchers better understand how LLMs form their “beliefs,” they think it may be possible to make the models more efficient.
“We all know that AI is energy-expensive, so if we want to make it scalable, we have to change how it operates,” says Xu. “Our human brain is very energy efficient, so we hope this research brings us back to thinking about how we can make LLMs to work more like the human brain, so that they activate only a subset of parameters in charge of a specific task. That’s an important argument we want to convey.”
More information:
Yuheng Wu et al, How large language models encode theory-of-mind: a study on sparse parameter patterns, npj Artificial Intelligence (2025). DOI: 10.1038/s44387-025-00031-9
Citation:
Mind readers: How large language models encode theory-of-mind (2025, November 11)
retrieved 11 November 2025
from https://techxplore.com/news/2025-11-mind-readers-large-language-encode.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.
Tech
‘The Running Man’ Conjures a Dystopian Vision of America That’s Still Not as Bad as Reality
Thirty-eight years later, The Running Man is back on our screens, playing to a world that seems to have caught up with the original’s idiocy. This new one features a considerably less bulky, but no less watchable star in Glen Powell, playing runner Ben Richards. Fired from various jobs for insubordination, and tending to a sick toddler, he’s press-ganged into joining America’s favorite kill-or-be-killed game show, after a producer identifies him as “quantifiably the angriest man to ever audition.”
The show’s premise has been tweaked a bit, too. Instead of navigating a series of video-game-like levels for the length of a TV broadcast, Richards must now survive in the real world for 30 days, surveilled by hovering network TV camera droids, pursued by armed-to-the-teeth “hunters,” private police goons, and a general public who spot and film runners using a proprietary app on their smartphones. The longer he lasts, and the more pursuers he can kill, the more money he makes. He’s cheered (and booed) by a massive audience of brain-dead oafs called Running Fans, glued to their screens 24/7. Like Schwarzenegger’s Richard before him, Powell makes the transition from onscreen villain to beloved folk hero, mugging for the cameras as his antics drive the ratings.
If it sounds familiar, it’s because this new version of The Running Man, which is cowritten and directed by Edgar Wright (Hot Fuzz, Scott Pilgrim vs. the World), draws as much from the original film and Stephen King’s source novel as it does from present-day reality. A modern-day America overseen by a game show president, where ICE squads team up with Dr. Phil McGraw to turn deportation raids into reality television, would seem ripe for a Running Man remake. But that’s the problem. Satire relies on caricature. And the new version is barely exaggerative. Does the very idea of a lethal game show seem that far off, in a world where the success of Netflix’s South Korean thriller series Squid Game (itself a variation on the The Running Man format) spawned an actual, licensed Squid Game-style competitive reality TV show? Or when a grinning zillennial YouTuber named “MrBeast” baits contestants with ten grand to sit in a bathtub full of snakes? A few weeks ago I watched live as rookie New York Giants’ running back Cam Skattebo’s ankle twisted 45-degrees, as if cranked by some invisible wrench, while a bar-full of rival fans cheered.
Tech
Why companies don’t share AV crash data, and how they could
Autonomous vehicles (AVs) have been tested as taxis for decades in San Francisco, Pittsburgh and around the world, and trucking companies have enormous incentives to adopt them.
But AV companies rarely share the crash- and safety-related data that is crucial to improving the safety of their vehicles—mostly because they have little incentive to do so.
Is AV safety data an auto company’s intellectual asset or a public good? It can be both—with a little tweaking, according to a team of Cornell researchers.
A new data-sharing roadmap
The team has created a roadmap outlining the barriers and opportunities to encourage AV companies to share the data to make AVs safer, from untangling public versus private data knowledge, to regulations to creating incentive programs.
“The core of AV market competition involves who has that crash data, because once you have that data, it’s much easier for you to train your AI to not make that error. The hope is to first make this data transparent and then use it for the public good, and not just profit,” said Hauke Sandhaus, M.S. ’24, a doctoral candidate at Cornell Tech and co-author of “My Precious Crash Data,” presented Oct. 16 at the ACM on Human-Computer Interaction.
His co-authors are Qian Yang, assistant professor at the Cornell Ann S. Bowers College of Computing and Information Science; Wendy Ju, associate professor of information science and design tech at Cornell Tech, the Cornell Ann S. Bowers College of Computing and Information Science and the Jacobs Technion-Cornell Institute; and Angel Hsing-Chi Hwang, a former postdoctoral associate at Cornell and now assistant professor of communication at the University of Southern California, Annenberg.
Barriers to sharing AV safety data
The team interviewed 12 AV company employees who work on safety in AV design and deployment, to understand how they currently manage and share safety data, the data sharing challenges and concerns they face, and their ideal data-sharing practices.
The interviews revealed the AV companies have a surprising diversity of approaches, Sandhaus said. “Everyone really has some niche, homegrown data set, and there’s really not a lot of shared knowledge between these companies,” he said. “I expected they would be much more commonality.”
The research team discovered two key barriers to sharing data—both underscoring a lack of incentives. First, crash and safety data includes information about the machine-learning models and infrastructure that the company uses to improve safety.
“Data sharing, even within a company, is political and fraught,” the team wrote in the paper. Second, the interviewees believed AV safety knowledge is private and brings their company a competitive edge.
“This perspective leads them to view safety knowledge embedded in data as a contested space rather than public knowledge for social good,” the team wrote.
And U.S. and European regulations are not helping. They require only information such as the month when the crash occurred, the manufacturer and whether there were injuries. That doesn’t capture the underlying unexpected factors that often cause accidents, such as a person suddenly running onto the street, drivers violating traffic rules, extreme weather conditions or lost cargo blocking the road.
Potential solutions for safer autonomous vehicles
To encourage more data-sharing, it’s crucial to untangle safety knowledge from proprietary data, the researchers said. For example, AV companies could share information about the accident, but not raw video footage that would reveal the company’s technical infrastructure.
Companies could also come up with “exam questions” that AVs would have to pass in order to take the road. “If you have pedestrians coming from one side and vehicles from the other side, then you can use that as a test case that other AVs also have to pass,” Sandhaus said.
Academic institutions could act as data intermediaries with which AV companies could leverage strategic collaborations. Independent research institutions and other civic organizations have set precedents working with industry partners’ public knowledge. “There are arrangements, collaboration, patterns for higher ed to contribute to this without necessarily making the entire data set public,” Qian said.
The team also proposes standardizing AV safety assessment via more effective government regulations. For example, a federal policymaking agency could create a virtual city as a testing ground, with busy traffic intersections and pedestrian-heavy roads that every AV algorithm would have to be able to navigate, she said.
Federal regulators could encourage car companies to contribute scenarios to the testing environment. “The AV companies might say, ‘I want to put my test cases there, because my car probably has passed those tests.’ That can be a mechanism for encouraging safer vehicle development,” Yang said. “Proposing policy changes always feels a little bit distant, but I do think there are near-future policy solutions in this space.”
More information:
Hauke Sandhaus et al, My Precious Crash Data: Barriers and Opportunities in Encouraging Autonomous Driving Companies to Share Safety-Critical Data, Proceedings of the ACM on Human-Computer Interaction (2025). DOI: 10.1145/3757493
Citation:
Why companies don’t share AV crash data, and how they could (2025, November 11)
retrieved 11 November 2025
from https://techxplore.com/news/2025-11-companies-dont-av.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.
-
Tech1 week agoCISOs in court: Balancing cyber resilience and legal accountability | Computer Weekly
-
Fashion1 week agoCoach reconnects with Bank & Vogue for upcycled bags using corduroy
-
Sports1 week agoBears’ Colston Loveland bounces off 2 defenders to score clutch TD for win over Bengals
-
Fashion1 week agoGermany’s Adidas achieves highest-ever quarterly sales in Q3 2025
-
Business1 week agoFirst new Amazon electric heavy goods vehicles hit UK roads
-
Sports1 week agoNFL broadcaster Cris Collinsworth makes government shutdown joke as Seahawks clobber Commanders
-
Business1 week agoBusiness news live – Banks bet on interest rate cut and UK bills rise 8% in a year
-
Tech1 week agoTech Traveler’s Guide to Seattle: Where to Stay, Eat, and Recharge
